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Abstract

We study the design and implementation of optimal regional insurance provi-
sion against privately observable shocks to the degree of intergenerational external-
ity (DIE) induced by, or the degree of technological progress (DTP) for producing,
intergenerational public goods (IPGs). Federal transfers provide interregional insur-
ance while local debt provides intergenerational insurance. If regions have autonomy
in the choice of local debt issuance, the optimal allocation of federal transfers that
induces truth-telling requires that regions issuing higher debt receive more trans-
fers under complementarity but less transfers under substitutability. In the case
of shocks to the DIE, federal transfers and local debt are complementary in imple-
menting the asymmetric-information optimum; in the case of shocks to the DTP,
they are complementary with observable output of the IPGs, but are substitutive
with observable expenditure on the IPGs.
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1 Introduction

Intergovernmental grants implemented by the central government of a federal fiscal
system are justified on the grounds that they internalize interregional spillovers generated
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by local public goods provision (Oates, 1972) or inter-jurisdictional migrations,1 redis-
tribute income between regions,2 and serve as a risk-sharing device against region-specific
shocks.3 As shown by Sala-i-Martin and Sachs (1992), even policies aimed at redistri-
bution may have an effect on the degree of interregional risk sharing. Indeed, there is
empirical evidence showing that fiscal transfers from the federal government provide sub-
stantial insurance against regional economic fluctuations in the United States, Canada,
Japan, Norway, and so on.4 Even in the presence of complete markets, Farhi and Werning
(2017) provide a rationale for government intervention in terms of public risk sharing.

In addition, regional public debt serves as a public contract for sharing risks between
generations or over lifecycle in a given region.5 Since present generations are imperfectly
altruistic (e.g., Altonji, Hayashi and Kotlikoff, 1992, 1997), however, the design of optimal
public debt that takes into account possible intergenerational conflicts turns out to be a
nontrivial task (e.g., Rangel, 2003, 2005; Huber and Runkel, 2008; Dai, Liu and Tian,
2019b).

Given the insurance role played by both federal transfers and local public debt, the
following questions arise. How would these two options of insurance provision behave
when jointly designed by the central government? Under decentralized debt decisions,
how would the interregional insurance provided by the central government interact with
the intergenerational insurance provided locally? More specifically, shall they exhibit
complementarity or substitutability in the course of implementation? Indeed, whether
federal grants and local debt are complementary or substitutive matters greatly in regional
insurance design. Specifically, if these two insurance schemes are complementary, then
using both of them jointly for regional insurance is justified on efficiency grounds; if they
are substitutive, on the other hand, then efficiency considerations require using either
federal grants or local debt but not both of them simultaneously in the provision of
regional insurance.6

To the best of our knowledge, these issues have not been explored in the literature.
The goal of this investigation is to address these questions via tackling the optimal design
and implementation of risk-sharing contracts consisting of both intergovernmental grants
and regional public debt along the space and time dimensions, respectively.

We consider a country that consists of a central government and many sub-national

1See, e.g., Hercowitz and Pines (1991); Cremer, Marchand and Pestieau (1997); Figuières and Hindriks
(2002); Breuillé and Gary-Bobo (2007); and Dai, Liu and Tian (2019a).

2See, e.g., Cremer and Pestieau (1997); Raff and Wilson (1997); Cornes and Silva (2000); and Bor-
dignon, Manasse and Tabellini (2001).

3See, e.g., Persson and Tabellini (1996a, 1996b), Bucovetsky (1998), Lockwood (1999), Cornes and
Silva (2000), and Jüßen (2006).

4See, e.g., Atkeson and Bayoumi (1993); Asdrubali, Sørensen and Yosha (1996); Mélitz and Zumer
(1999); Athanasoulis and van Wincoop (2001); Kalemli-Ozcan, Sørensen and Yosha (2003); Borge and
Matsen (2004); Evers (2015).

5In an infinite-horizon economy where individuals face uninsurable risks to their human capital accu-
mulation, Gottardi, Kajii and Nakajima (2015) show that the benefits of government debt increase with
the magnitude of risks and the degree of risk aversion.

6In particular, identifying the case with policy substitutability creates a sort of policy flexibility for
regional insurance provision, i.e., grant and debt can be used simultaneously while targeting alternative
policy goals. For instance, federal transfers are used for interregional income redistribution or interregional
externality correction, while local debt is used for regional insurance provision. Or, federal transfers are
used mainly for regional insurance provision, while local debt is strictly constrained to defuse local
government debt bomb (e.g., The Economist, 2015).
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governments located in geographically decentralized regions. Throughout, the center is in
charge of revenue transfers across regions whereas local governments are responsible for
collecting taxes used for the provision of local public goods. Each region is populated by
a continuum of identical residents who live for one period only. We focus on an economy
that lasts for two periods, thus enabling us to incorporate intergenerational concerns into
the current setting, while retaining simplicity and tractability. The current generation
chooses how much debt to pass to the future generation and how much to invest in
intergenerational public goods (IPGs), such as basic science, environmental protection
and public capital. Initially, as a centralization benchmark to which we refer, we let
the center jointly determine the amount of public debt a region can issue as well as the
transfers it can receive. We then move to the more realistic situation with decentralized
leadership in which local governments are allowed to have the autonomy in choosing the
level of regional public debt.

Regions are assumed to be ex ante identical but are subject to stochastic shocks to
either the degree of intergenerational externality induced by, or the degree of technological
progress for producing, the IPGs. In this context, while regional heterogeneity in shock
realizations creates a natural role for interregional insurance represented by transfers from
the center to the regions, a potential role of intergenerational insurance played by local
public debt is also easy to understand because both types of shocks primarily affect the
future generations. Firstly, the present generation incurs the cost of IPG investment that
generates a positive externality on the future generation. Secondly, it is well recognized
that the progress made in fields like basic science, space exploration and environmental
protection benefits from standing on the shoulder of giants, and hence a high degree of
technological progress to be realized in the future appeals to R&D investments in the
present.

As is customary in the fiscal federalism literature, regional governments are better
informed about the shocks than the federal government.7 As such, intergovernmental
grants and regional public debt form the risk-sharing contracts designed by the center,
taking into account the fiscal budget balance, participation and truth-telling constraints.
From solving the mechanism design problem facing the center, conducting the comparison
with the full-information optimum (or the first-best allocation), and implementing the
optimal allocation through decentralized regional debt decisions, we obtain the following
four results, regardless of the source of shocks.

First, the intertemporal allocation is not distorted, i.e., the intertemporal rate of
substitution between current and future consumption equals the intertemporal rate of
transformation, only at the bottom and top types, and full insurance is not achievable
for all types. Since the informational asymmetry between the center and regions prevents
complete public insurance from happening in this setting, we somehow provide a rationale
for the usefulness of private insurance. Second, if the intergovernmental grant received by
the bottom type is distorted upward (or is large), then its public debt must be distorted
downward (or be low), and vice versa; meanwhile, the direction of distortion is qualita-
tively reversed between the bottom and top types. Overall, these two results characterize
the asymmetric-information welfare optimum.

Third, for all but the bottom and top types, to truthfully implement the welfare opti-
mum through decentralized regional debt decisions, the intergovernmental grant scheme

7See, for example, Oates (1972); Bucovetsky, Marchand and Pestieau (1998); Lockwood (1999); Cornes
and Silva (2000, 2002); Huber and Runkel (2008).
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enforced by the center must be a nonlinear, almost everywhere differentiable and mono-
tonic function of local debt. Since the intertemporal allocation is distorted for these types
in the asymmetric-information optimum, the amounts of public debt allocated to these
regions are different than the ones established by maximizing their respective regional
goals. As a result, if borrowing decisions are decentralized to the regional governments,
the grant scheme enforced by the center must depend on regional debt such that region-
s have incentives to truthfully reveal their types. And fourth, for the bottom and top
types, the grant scheme that decentralizes the welfare optimum is, however, independen-
t of the regional public debt. The reason is that the intertemporal allocations desired
by regions of the top and bottom types are not distorted in the asymmetric-information
welfare optimum, and hence their truth-telling can be guaranteed by directly setting the
grants established in the asymmetric-information optimum. These two results show the
key features of the implementation scheme over the entire type distribution.

Moreover, when considering the source of shocks, the relationship between these two
insurance-provision instruments in the course of implementing welfare optimum is char-
acterized as follows. When regions differ in the degree of intergenerational externality,
they are complementary in insurance provision. The immediate implication is that it
is socially optimal to use both insurance schemes simultaneously when facing this sort
of shocks. When regions differ in the degree of technological progress for producing the
IPGs, they are complementary if it is the physical output of public goods that is observ-
able, whereas they are substitutive if it is the regional expenditure on public goods that is
observable. For example, the physical output of some IPGs such as parks, public schools
and highways is observable, whereas that of other IPGs such as environmental protection,
basic science and R&D is unobservable, at least in the short run, by the center who is in
general not involved in the process of producing these public goods. Consequently, it is
not always socially beneficial to adopt both insurance schemes in insuring against shocks
to the degree of technological progress. Whether it is the input or the output of IPGs
that is observable makes a great difference in determining whether the insurance provided
by federal grants and the insurance provided by local debt should be used jointly or in
isolation. In terms of identifying the effect of alternative observability on the implemen-
tation of information-constrained optima, this finding contributes to the public finance
and regional science literature. In addition, if the intergenerational conflict induced by
local debt is the dominant issue in an economy, then the case of substitutability shows
the social desirability of tightening local borrowing to the lowest possible level while re-
lying on intergovernmental grants enforced by the center. These results characterize the
connections between these public risk-sharing schemes and the underlying environment,
thus helping us understand how they should be adopted in real-world federations.

The present study is related to the literature that examines theoretically the design
of regional insurance provision in a federation, such as Persson and Tabellini (1996a,
1996b), Bucovetsky (1998), Lockwood (1999), and Cornes and Silva (2000). A comparison
with these studies reveals three distinctive features of our study. Firstly, rather than
adopting a one-period static setting, we consider a two-period setting that allows for taking
into account intergenerational concerns and a natural role for public debt. Secondly,
the sources of shocks considered in the paper as well as the informational asymmetry
between the center and the regions are novel for analyzing optimal regional insurance
provision. Thirdly, instead of studying the local debt and the federal grants as unrelated
policy variables, we investigate the joint design of these two risk-sharing schemes along
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two dimensions, namely intergovernmental grants along the interregional dimension and
public debt along the intertemporal/intergenerational dimension, and further analyze
their interaction in the course of optimal decentralization. For these features, our paper
extends and complements the existing literature.

The remainder of the paper is organized as follows. Section 2 describes the economic
environment. Section 3 derives the welfare optimum and discusses its implementation
when regions differ in the degree of intergenerational externality. Section 4 derives the
welfare optimum and discusses its implementation when regions differ in the degree of
technological progress for producing local IPGs. Section 5 concludes. Proofs are relegated
to Appendix A.

2 Environment

We consider a two-period economy of a federation consisting of a federal government
(also referred to as the center) and n regions, each of which is inhabited by a representative
immobile resident in each period.8 That is, each resident lives for one period only. The
social welfare of region i, for i = 1, 2, ..., n, is given by

u1(ci1) + g1(Gi
1)︸ ︷︷ ︸

utility of generation 1

+ u2(ci2) + g2(θiGi
1 +Gi

2)︸ ︷︷ ︸
utility of generation 2

, (1)

in which ci1 and ci2 are private consumptions, Gi
1 and Gi

2 are public goods, and θi ∈ (0, 1]
is a parameter measuring the degree of intergenerational externality of the IPG, Gi

1.9 All
four functions in (1) are strictly increasing, strictly concave and satisfy the usual Inada
conditions.10

The representative resident of generation t, for t = 1, 2, in region i has private budget
constraint cit + τ it = yt, where yt is the commonly given income across all regions.11 The
lump sum tax τ it is collected by the local government to finance the provision of local
public goods. In period 1, it receives a transfer zi from the center and issues debt bi. If
zi < 0, then the local government has to pay a tax to the center. Debt plus interest has to
be repayed in period 2, taking as given the common interest rate r > 0.12 The fiscal budget
constraints of region i in periods 1 and 2 can be written as Gi

1 = τ i1 + bi + zi and Gi2 =
τ i2− (1 + r)bi, respectively. We let Gi2 = ξiGi

2, in which the parameter ξi ∈ (0, 1] measures
the per unit cost of period-2 public goods provision. The case of ξi < 1 captures the effect
of technological progress, which as argued by Rangel (2005) is important for IPGs such

8We leave the interesting case with horizontal fiscal externalities induced by cross-region labor mobility
to our future research.

9IPG is a kind of public good produced in generation 1 and still (partially) usable in generation 2
(Rangel, 2005).

10Also, note that the preference specification encompasses the special case with u2(ci2)+g2(θiGi
1+Gi

2) ≡
β[u1(ci2)+g1(θiGi

1 +Gi
2)], in which β > 0 is a social discount factor that can be interpreted as a political-

economy parameter reflecting the degree to which regional governments take into account the welfare of
future generations.

11Instead of considering income heterogeneity across regions, which actually has been well studied
in terms of optimal intergovernmental grants, we shall consider some novel dimensions of cross-region
heterogeneity. Also, one can interpret our model as restricting attention to regions of similar personal
incomes, such as California and Texas in the United States, or Jiangsu and Zhejiang provinces in China.

12Assuming that there is a common capital market within a federation, there is a unique rental price
level of capital such that arbitrage opportunities are eliminated.
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as infrastructure, space exploration and environmental capital. In addition, as shown by
Maskin and Riley (1985), it generally makes a difference in the implementation process
whether the expenditure Gi2 or the physical output Gi

2 is observable to the mechanism
designer. If it is the expenditure that is observable, then we need to express the output
as a function of expenditure, namely Gi

2 = Gi2/ξi ≡ ρiGi2.
For expositional convenience, the region index i is suppressed in the remainder of the

set-up. Combining the private budget constraints with the public budget constraints and
applying them to equation (1), a region’s social welfare maximization problem is given by

max
c1,c2

u1(c1) + g1(y1 + b+ z − c1)

+ u2(c2) + g2 (θ(y1 + b+ z − c1) + ρ[y2 − b(1 + r)− c2]) ,
(2)

in which ρ ≥ 1. Note that in problem (2), choosing c1 and c2 is equivalent to choosing τ1

and τ2. The first-order conditions are thus written as

u′1(c1) = g′1(G1) + θg′2(θG1 +G2) and u′2(c2) = ρg′2(θG1 +G2), (3)

which represent the Samuelson conditions for the optimal provision of public goods.
We allow regions to differ in two dimensions in terms of privately observable shocks:

the degree of intergenerational externality measured by θ and the degree of technological
progress for producing IPGs measured by ξ (or, equivalently, by ρ). Interpreted as a
measure of the quality or durability of local IPGs, it is reasonable to assume that θ is
privately observable by local governments. We argue from the following two perspectives.
Firstly, the quality of the physical output of some IPGs, such as basic science, local
environmental protection and R&D, is objectively unobservable, at least in the short run,
by the center who is in general not involved in the process of producing these public
goods. Secondly, the local politicians have subjective incentives to hide/misreport such
information for the sake of either getting more transfers, getting personal promotions, or
avoiding punishments. For example, local politicians in China may get promoted to higher
levels because of doing a good job in public infrastructure investment or establishing a
business friendly environment, or may get punished for being responsible for tofu-dreg
projects13 in the provision of local IPGs, such as public schools, bridges and dams, that
end up in very low quality or even tragedies. As for ξ or ρ, namely the per unit cost of
period-2 public goods provision, it is usually assumed to be the private information of
local governments in the relevant literature, such as Boadway, Horiba and Jha (1999),
Lockwood (1999), and Cornes and Silva (2002).

As is well known, it is analytically intractable to obtain interesting results in the pres-
ence of multidimensional private information (e.g., Rochet and Choné, 1998; Armstrong
and Rochet, 1999). We thus consider two separate cases with the first one featuring
privately observable shocks to the degree of intergenerational externality (DIE) and the
second one featuring privately observable shocks to the degree of technological progress
(DTP).14 The random variables are assumed to be continuously distributed in intervals

13This is a well-known phrase coined by Zhu Rongji, the former premier of the People’s Republic of
China, on a visit to Jiujiang City, Jiangxi Province to describe a jerry-built dam.

14In Appendix B, we discuss a more general case with both parameters being unobservable by the center
but there being a certain functional relationship between these two parameters, thereby reducing a multi-
dimensional screening problem to a one-dimensional screening problem. That is, for the sake of obtaining

6



[θ, θ̄] ≡ Θ and [ξ, ξ̄] ≡ Ξ (or [ρ, ρ̄] ≡ Υ), and also are identically and independently dis-
tributed across regions. We denote by f = F ′ > 0 and F , respectively, the density and
distribution functions, which are common knowledge throughout.

3 Welfare Optimum and Implementation when Re-

gions Differ in Intergenerational Externality

In this section, we focus on the optimal provision of regional insurance against shocks
to the degree of intergenerational externality θi. For this purpose, we assume that all
regions have the same degree of technological progress, and let ρi (or ξi) = 1 for all i
without loss of generality. We introduce first the problem of the center. Then, we proceed
to derive welfare optimum in cases of complete and asymmetric information between the
center and regions, and discuss the implementation issue.

3.1 The Problem of the Center

The center is responsible for determining regional debt and cross-region transfers as
non-market insurances against shocks on intergenerational externality. Assuming it treats
all regions equally and the realization of shocks can be privately observed by each region,
it thus maximizes the expectation of the value function (2) of any region, subject to fiscal
budget balance, incentive-compatibility and participation constraints.

We follow the mechanism design approach and apply the direct revelation principle.
The center offers each region i a contract stipulating the federal transfer and the region’s
debt conditional only on its report of type θi. The reported type also belongs to set Θ.
Since all regions are ex ante identical, the insurance contract can be thought of being
signed between the principal (the center) and an agent (a region) whose type θ belongs
to set Θ following the distribution F .15

The timing of the underlying game is given as follows:

• Shock occurs, i.e., nature moves first.

• Local governments privately observe shock realizations.

• The federal government offers the contract menu, {b(θ), z(θ)}, for all θ ∈ Θ.

• The local governments simultaneously pick a contract (or equivalently report their
types), and the game ends.

some clear-cut results, there is multidimensional heterogeneity while maintaining one-dimensional private
information. Two main results are obtained. First, it remains true that the informational asymmetry be-
tween the center and regions prevent complete public insurance from happening. Second, federal transfers
and local debt exhibit policy complementarity in terms of truthfully implementing the welfare optimum,
regardless of whether it is the physical output of or the expenditure on the IPGs that is observable by
the center.

15In fact, the center offers each region i a contract stipulating the federal transfer and the region’s debt
conditional only on its report of type θi, denoted by θ̂i, i.e., bi = b(θ̂i) and zi = z(θ̂i). To formulate
the constraints facing the mechanism designer, we consider the limiting case with the number of regions
being large, i.e., n→∞. Making use of the weak law of large numbers, the empirical distributions of bi

and zi across regions approximate the theoretical distributions generated by bi = b(θ̂i), zi = z(θ̂i) and
F .
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We write the value function generated by the maximization problem (2) as V (b, z, θ).
As all regions are ex ante identical, the objective of the center can be written as:

EU =

∫ θ̄

θ

V (b(θ), z(θ), θ)f(θ)dθ. (4)

The truth-telling constraints require that any region with shock realization θ prefers
to report θ rather than some θ′; formally

V (b(θ), z(θ), θ) ≥ V (b(θ′), z(θ′), θ) ∀θ′ 6= θ, θ′, θ ∈ Θ. (5)

The participation constraint for any region specifies that it would like to participate in
the federation and receive some interregional insurance via the grant system rather than
secede. Following the arguments of Lockwood (1999), we impose the ex ante participation
constraint:16

EU ≥
∫ θ̄

θ

max
b(θ)

V (b(θ), 0, θ)f(θ)dθ, (6)

where EU is given by (4). Since the center can always replicate by setting z ≡ 0 what
any region could get by seceding, we are sure that constraint (6) will never bind and can
be safely ignored in the following analysis.

The federal budget balance constraint for large n reads as∫ θ̄

θ

z(θ)f(θ)dθ ≤ 0, (7)

which implies that in aggregate transfers must sum to at most zero.
The problem facing the center is thus to choose {b(θ), z(θ)}θ∈Θ to maximize (4) subject

to (5) and (7). As is common in the mechanism design literature, we let b and z be
piecewise continuously differentiable functions, and let b(θ) be everywhere continuous.

3.2 Welfare Optimum

As a standard benchmark result to which we can refer, we start our analysis by deriving
the full-information (first-best) allocation that maximizes (4) subject to (7) only. We index
the first-best optimum by the superscript FB.

Lemma 3.1 In the full-information case, the welfare optimum {bFB(θ), zFB(θ)}θ∈Θ sat-
isfies:

(i) The intertemporal rate of substitution between current and future public
goods consumption equals intertemporal rate of transformation, namely

g′1(GFB
1 (θ))

g′2(θGFB
1 (θ) +GFB

2 (θ))
= 1 + r − θ for any θ ∈ Θ.

(ii) Full insurance is achievable, namely

Vz
(
bFB(θ), zFB(θ), θ

)
= γ for any θ ∈ Θ,

in which γ > 0 denotes the Lagrangian multiplier on the budget constraint
(7).

16Indeed, the ex post participation constraint is usually too strong to be fulfilled.
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Proof. Straightforward and omitted.
Part (i) yields that the intertemporal allocation of any type of regions is not distorted in

the first-best optimum. Part (ii) gives the standard insurance condition which states that
the consumption of period-2 public goods is the same regardless of the shock realization
on the degree of intergenerational spillovers.

We now turn to the more interesting case with asymmetric information between the
center and regions. In this case, the realization of the random variable measuring the
degree of intergenerational externality is private information so that regions of one type
could mimic regions of another type in order to obtain (more) insurance transfers. We
now index the second-best allocation by the superscript ∗.

We shall need the following assumption:

Assumption 3.1 −θG1g
′′
2 ≤ g′2 for all θ ∈ (θ, θ̄), namely the absolute value of the e-

lasticity of generation 2’s marginal utility from G1 is no greater than one for all but the
endpoints of the type distribution.

This is a technical restriction imposed on generation 2’s preference on public goods.
It is easy to verify that this assumption is satisfied for log and power utility functions.

Proposition 3.1 In the asymmetric-information case without bunching, namely ḃ(θ) >
0, the welfare optimum {b∗(θ), z∗(θ)}θ∈Θ satisfies:

(i) Concerning the relationship between the intertemporal rate of substitution
between current and future public goods consumption and the intertemporal
rate of transformation, we have:

g′1(G∗1(θ))

g′2(θG∗1(θ) +G∗2(θ))

{
= 1 + r − θ for θ ∈ {θ, θ̄};
< 1 + r − θ for θ ∈ (θ, θ̄).

(ii) Suppose Assumption 3.1 holds. Let µ1(θ) > 0 be the Lagrangian multiplier
on the value constraint v(θ) ≡ V (b(θ), z(θ), θ) of any type-θ region who is
reporting truthfully, then we have:

Vz (b∗(θ), z∗(θ), θ)

{
= γ/µ1(θ) for θ ∈ {θ, θ̄};
< γ/µ1(θ) for θ ∈ (θ, θ̄).

Proof. See Appendix A.
The key finding of this proposition is the following. First, the intertemporal allocation

under asymmetric information is not distorted only at the endpoints of shock distribution,
that is, for regions of the highest and the lowest degrees of intergenerational externality.
Second, given that the multiplier µ(θ) is type-dependent, there is incomplete insurance
under asymmetric information.

As informational friction is what we focus on in this study, it is interesting to i-
dentify the effect of asymmetric information between the center and regions on optimal
debt and intergovernmental grants policies. To this end, it is worthwhile providing a
detailed characterization of the Lagrangian multiplier µ1(θ) after comparing Lemma 3.1
and Proposition 3.1.
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Lemma 3.2 For the current economic environment, the following statements are true.

(i) If µ1(θ) is decreasing in θ, then there exists some θ̃ ∈ (θ, θ̄) such that
µ1(θ) > 1 for θ ∈ [θ, θ̃), µ1(θ) = 1 for θ = θ̃, and µ1(θ) < 1 for θ ∈ (θ̃, θ̄].

(ii) If µ1(θ) is increasing in θ, then there exists some θ̆ ∈ (θ, θ̄) such that
µ1(θ) < 1 for θ ∈ [θ, θ̆), µ1(θ) = 1 for θ = θ̆, and µ1(θ) > 1 for θ ∈ (θ̆, θ̄].

Proof. See Appendix A.
Although µ(θ) could be a complex nonlinear function of θ, here we focus on the case

of monotonicity for obtaining some clear-cut results. Indeed, applying Lemma 3.2, the
following proposition is established.

Proposition 3.2 Under Assumption 3.1, the following statements are true.

(i) If µ1(θ) is decreasing in θ, then (i-a) z∗(θ) > zFB(θ) for all θ ∈ [θ, θ̃]; (i-b)
z∗(θ̄) < zFB(θ̄); and (i-c) b∗(θ) < bFB(θ) and b∗(θ̄) > bFB(θ̄).

(ii) If µ1(θ) is increasing in θ, then (ii-a) z∗(θ) > zFB(θ) for all θ ∈ [θ̆, θ̄];
(ii-b) z∗(θ) < zFB(θ); and (ii-c) b∗(θ) > bFB(θ) and b∗(θ̄) < bFB(θ̄).

Proof. See Appendix A.
If µ1(θ) is decreasing in θ, as considered in claim (i-a), then the shadow prices of the

value constraint under truth-telling are larger for lower types of regions (i.e., regions of
lower degrees of intergenerational externality) than for higher types. As a result, it is
more likely to be that lower types extract the information rent and receive more transfers
under asymmetric information than they would do under full information. Claim (ii-a)
can be interpreted in a similar way. Regardless of whether µ1(θ) is decreasing or increasing
in θ, the optimal allocation under asymmetric information is distorted at both top and
bottom types, and importantly, the distortion is qualitatively reversed between the top
and bottom of shock distribution.

Moreover, if the shadow prices of the value constraint under truth-telling are larger
for lower types than for higher types, then the top type receives less transfers while issues
more debt, and the bottom type receives more transfers while issues less debt than they
would exhibit, respectively, in the full-information optimum. The intuition for this result
is the following. Recall first that the intertemporal rate of transformation is the rate
at which savings in the first period can be transformed into consumption in the second
period, and an increase in which implies an increase in the opportunity cost of borrowing.
Note that the positive intergenerational spillovers induced by IPG investment partly offset
the negative intergenerational externality caused by borrowing, the bottom-type regions
have the largest opportunity cost of borrowing, formally 1+r−θ > 1+r−θ for any θ > θ,
which is public knowledge. In consequence, when µ1(θ) is decreasing in θ, imposing an
upward distortion on transfers while a downward distortion on debt provides appropriate
incentives such that the bottom-type regions reveal their type truthfully under asymmetric
information. The other case, in which the shadow prices of the value constraint under
truth-telling are larger for higher types than for lower types, can be analyzed analogously.

3.3 Implementation

We have established the welfare optimum under both complete and asymmetric infor-
mation in the previous subsection, we now proceed to consider how to implement it via
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regionally-decentralized debt decisions. That is, both regions choose a level of public debt
to maximize their regional welfare, taking as given the intergovernmental grants scheme
provided by the center. Formally, the maximization problem of regions of type-θ is

max
b(θ)

V (b(θ), z(θ), θ)

for any given z(θ). Rewriting private consumptions as c1 = φ̃(b(θ), z(θ), θ) and c2 =
ψ̃(b(θ), z(θ), θ) and applying the Envelope Theorem, the first-order condition is thus writ-
ten as

g′1

(
y1 + b(θ) + z(θ)− φ̃(b(θ), z(θ), θ)

)
g′2

(
θ
(
y1 + b(θ) + z(θ)− φ̃(b(θ), z(θ), θ)

)
+ y2 − (1 + r)b(θ)− ψ̃(b(θ), z(θ), θ)

)
= 1 + r − θ,

(8)

showing that the intertemporal rate of substitution must be equal to the intertemporal
rate of transformation at the regional welfare optimum.

Making use of (8) and Lemma 3.1, we immediately have the result: The full-information
optimum is attained by simply setting z(θ) = zFB(θ) for all θ ∈ Θ. The reason is that
the center can observe the type of each region and also the full-information optimum does
not distort the intertemporal allocation desired by each region.

Under asymmetric information, the center must design intergovernmental grants scheme
that guarantees incentive compatibility for all regions. It follows from Proposition 3.1 that
the intertemporal allocation of regions of all but top and bottom types is distorted, so the
asymmetric-information optimum can no longer be implemented through decentralized
debt decisions characterized by (8) with the center simply setting z(θ) = z∗(θ). Indeed,
we have established the following proposition.

Proposition 3.3 Suppose the second-order sufficient condition for incentive compatibility
is not binding, namely ḃ(θ) > 0. The grant scheme z∗(b) that decentralizes the asymmetric-
information optimum {b∗(θ), z∗(θ)}θ∈Θ is a nonlinear nondecreasing function of b, almost
everywhere differentiable, with the slope

dz∗

db

{
= 0 for b ∈ {b∗(θ), b∗(θ̄)};
> 0 for b ∈ (b∗(θ), b∗(θ̄)).

Proof. See Appendix A.
By Proposition 3.1 we see that the intertemporal allocation under asymmetric infor-

mation is not distorted at the endpoints of type distribution, thus the levels of local debt
desired by regions at the bottom and top of type distribution, namely b∗(θ) and b∗(θ̄),
can be realized by simply setting z∗(θ) and z∗(θ̄), respectively. This explains why we have
dz∗/db = 0 at the endpoints of type distribution in Proposition 3.3. For regions of types
between θ and θ̄, their intertemporal allocations are indeed distorted with respect to the
first-best. As such, if regions of higher degrees of intergenerational spillovers are allowed
to issue more debt than regions of lower degrees, then the grant scheme that decentralizes
the asymmetric-information optimum should be designed such that the former regions
get strictly more grants than the latter ones. Moreover, since we have Vz > 0, this grant
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scheme guarantees that regions with high degrees of intergenerational spillovers shall not
mimic regions of low degrees.

The implication for the optimal funding structure of IPGs when facing this kind of
shocks is the following: more (respectively less) federal transfers plus more (respectively
less) local borrowing for regions of higher (respectively lower) degrees of intergenerational
externality induced by these IPGs. Therefore, to guarantee incentive compatibility when
the leadership of local borrowing is decentralized to each region, federal transfers and
local debt exhibit complementarity in the case of shocks to intergenerational externality.

4 Welfare Optimum and Implementation when Re-

gions Differ in Technological Progress

To analyze the optimal regional insurance provision when regions differ in shocks to
the degree of technological progress, we assume that all regions have the same degree of
intergenerational externality, denoted θ. ρi (or ξi) is a random variable the realization
of which is region i’s private information. As shown by Maskin and Riley (1985) and
Lockwood (1999), it generally makes a difference in the implementation process whether
the expenditure Gi2 or the physical output Gi

2 is observable to the mechanism designer.
So we shall discuss both possibilities.

4.1 The Case with Observable Expenditure on Public Goods

4.1.1 Welfare Optimum

The first-order conditions of problem (2) are now written as

u′1(c1) = g′1(G1) + θg′2(θG1 + ρG2) and u′2(c2) = ρg′2(θG1 + ρG2), (9)

and the corresponding regional value function is written as V (b, z, ρ).
Applying the Envelope Theorem, the first-best allocation can be characterized as s-

tated in Lemma 4.1. The proof is straightforward and omitted.

Lemma 4.1 In the full-information case, the welfare optimum {bFB(ρ), zFB(ρ)}ρ∈Υ sat-
isfies:

(i) The intertemporal rate of substitution between current and future public
goods consumption equals intertemporal rate of transformation, namely

g′1(GFB
1 (ρ))

g′2(θGFB
1 (ρ) + ρGFB2 (ρ))

= ρ(1 + r)− θ for any ρ ∈ Υ.

(ii) Full insurance is achievable, namely

Vz
(
bFB(ρ), zFB(ρ), ρ

)
= γ for any ρ ∈ Υ,

in which γ > 0 denotes the Lagrangian multiplier on the budget constraint∫ ρ̄
ρ
z(ρ)f(ρ)dρ ≤ 0.
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Part (i) yields that the intertemporal allocation of any type of regions is not distorted
in the first-best optimum. Part (ii) gives the standard insurance condition.

To derive the asymmetric-information optimum, we shall need the following assump-
tion:

Assumption 4.1 −ρG2g
′′
2 ≤ g′2 for all ρ ∈ (ρ, ρ̄), namely the absolute value of the elas-

ticity of marginal utility from consuming public good G2 = ρG2 is no greater than one for
all but the endpoints of the type distribution.

This is a technical restriction that is quite similar to Assumption 3.1. Under Assump-
tion 4.1, the center is thought of as solving the following maximization problem:

max

∫ ρ̄

ρ

v(ρ)f(ρ)dρ

s.t. v(ρ) = V (b(ρ), z(ρ), ρ);∫ ρ̄

ρ

z(ρ)f(ρ)dρ ≤ 0;

v̇(ρ) = g′2 (θφ(b(ρ), z(ρ), ρ) + ρψ(b(ρ), z(ρ), ρ))ψ(b(ρ), z(ρ), ρ);

ḃ(ρ) ≤ 0

(10)

in which we rewrite public goods expenditures as φ(b(ρ), z(ρ), ρ) = G1(ρ) and ψ(b(ρ), z(ρ), ρ)
= G2(ρ), the first equality constraint gives the value function of regions of type-ρ when
they are telling the truth, the second one is the fiscal budget constraint under pure in-
tergovernmental grants, the third one is the first-order necessary condition for incentive
compatibility, and the last one is the second-order sufficient condition for incentive com-
patibility.17

Indeed, solving problem (10) gives the following proposition.

Proposition 4.1 In the asymmetric-information case without bunching, the welfare op-
timum {b∗(ρ), z∗(ρ)}ρ∈Υ satisfies:

(i) Suppose Assumption 4.1 holds. Concerning the relationship between the
intertemporal rate of substitution between current and future public goods
consumption and the intertemporal rate of transformation, we have:

g′1(G∗1(ρ))

g′2(θG∗1(ρ) + ρG∗2(ρ))

{
= ρ(1 + r)− θ for ρ ∈ {ρ, ρ̄};
> ρ(1 + r)− θ for ρ ∈ (ρ, ρ̄).

(ii) Let µ1(ρ) > 0 be the Lagrangian multiplier on the value constraint v(ρ) ≡
V (b(ρ), z(ρ), ρ) of any type-ρ region who is reporting truthfully, then we
have:

Vz (b∗(ρ), z∗(ρ), ρ)

{
= γ/µ1(ρ) for ρ ∈ {ρ, ρ̄};
> γ/µ1(ρ) for ρ ∈ (ρ, ρ̄).

17The derivation of this monotonicity constraint is given in the proof of Proposition 4.1.
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Proof. See Appendix A.
As shown in Proposition 3.1, the intertemporal allocation under asymmetric informa-

tion is not distorted only at the endpoints of type distribution, and also there is incomplete
insurance.

Proposition 4.2 For the current economic environment, the following statements are
true.

(i) If µ1(ρ) is decreasing in ρ, then (i-a) there exists some ρ̆ ∈ (ρ, ρ̄) such

that z∗(ρ) < zFB(ρ) for all ρ ∈ [ρ̆, ρ̄]; (i-b) z∗(ρ) > zFB(ρ); and (i-c)

b∗(ρ) < bFB(ρ) and b∗(ρ̄) > bFB(ρ̄).

(ii) If µ1(ρ) is increasing in ρ, then (ii-a) there exists some ρ̃ ∈ (ρ, ρ̄) such

that z∗(ρ) < zFB(ρ) for all ρ ∈ [ρ, ρ̃]; (ii-b) z∗(ρ̄) > zFB(ρ̄); and (ii-c)

b∗(ρ) > bFB(ρ) and b∗(ρ̄) < bFB(ρ̄).

Proof. See Appendix A.
If µ1(ρ) is decreasing in ρ, then the shadow prices of the value constraint under truth-

telling are larger for lower types of regions than for higher types. As a result, it is more
likely to be that higher types incur the information rent and receive less transfers under
asymmetric information than they would do under full information. Claim (ii-a) can be
interpreted in a similar way.

Regardless of whether µ1(ρ) is decreasing or increasing in ρ, the optimal allocation un-
der asymmetric information is distorted at both top and bottom of the shock distribution,
and importantly, the distortion is qualitatively reversed between the top and bottom. For
example, if the shadow prices of the value constraint under truth-telling are larger for
lower types than for higher types, then the top type receives less transfers while issues
more debt, and the bottom type receives more transfers while issues less debt than they
would exhibit, respectively, in the full-information optimum.

4.1.2 Implementation

To implement the welfare optimum via regionally-decentralized debt decisions, we
solve first the maximization problem of regions of type-ρ:

max
b(ρ)

V (b(ρ), z(ρ), ρ)

for any given z(ρ). Rewriting private consumptions as c1 = φ̃(b(ρ), z(ρ), ρ) and c2 =
ψ̃(b(ρ), z(ρ), ρ) and applying the Envelope Theorem, the first-order condition is thus writ-
ten as

g′1

(
y1 + b(ρ) + z(ρ)− φ̃(b(ρ), z(ρ), ρ)

)
= [ρ(1 + r)− θ]×

g′2

(
θ
(
y1 + b(ρ) + z(ρ)− φ̃(b(ρ), z(ρ), ρ)

)
+ ρ

[
y2 − (1 + r)b(ρ)− ψ̃(b(ρ), z(ρ), ρ)

])
.

(11)
Making use of (11) and Lemma 4.1, we immediately have the following result: The full-
information optimum is attained by simply setting z(ρ) = zFB(ρ) for all ρ ∈ Υ.

Under asymmetric information, we obtain the following implementation scheme.
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Proposition 4.3 Suppose Assumption 4.1 holds and the second-order sufficient condition
for incentive compatibility is not binding, namely ḃ(ρ) < 0. The grant scheme z∗(b) that
decentralizes the asymmetric-information optimum {b∗(ρ), z∗(ρ)}ρ∈Υ is a nonlinear non-
increasing function of b, almost everywhere differentiable, with the slope

dz∗

db

{
= 0 for b ∈ {b∗(ρ), b∗(ρ̄)};
< 0 for b ∈ (b∗(ρ̄), b∗(ρ)).

Proof. See Appendix A.
The intuition for zero slope at the endpoints of type distribution is the same as that

stated for Proposition 3.3. For regions of other types, we have nonzero slopes. In particu-
lar, if regions of lower degrees of technological progress (namely smaller ρ) are allowed to
issue more debt than regions of higher degrees, then the grant scheme that decentralizes
the asymmetric-information optimum should be designed such that the former regions get
strictly less grants than the latter ones. As we have Vz > 0, this grant scheme guarantees
that regions with high degrees of technological progress shall not mimic regions of low
degrees.

The implication for the optimal funding structure of IPGs with the physical output
being unobservable by the center who is in general not involved in the production process,
such as local environmental protection, basic science and R&D, is the following: more
federal transfers plus less local borrowing for regions of higher degrees of technological
process for producing these IPGs, while less federal transfers plus more local borrowing for
regions of lower degrees of technological process for producing these IPGs. In consequence,
when facing this kind of shocks, federal transfers and local debt exhibit substitutability in
terms of regional insurance provision.

4.2 The Case with Observable Physical Output of Public Goods

4.2.1 Welfare Optimum

Now, the value function of regions of type-ξ reads as follows:

V (b, z, ξ) ≡ max
G1,G2

u1(y1 + b+ z −G1) + g1(G1)

+ u2(y2 − b(1 + r)− ξG2) + g2(θG1 +G2).
(12)

The first-order conditions are:

u′1(y1 + b+ z −G1) = g′1(G1) + θg′2(θG1 +G2) and

ξu′2(y2 − b(1 + r)− ξG2) = g′2(θG1 +G2).
(13)

We still give first the following benchmark result.

Lemma 4.2 In the full-information case, the welfare optimum {bFB(ξ), zFB(ξ)}ξ∈Ξ sat-
isfies:

(i) The intertemporal rate of substitution between current and future private
goods consumption equals intertemporal rate of transformation, namely

u′1(cFB1 (ξ))

u′2(cFB2 (ξ))
= 1 + r for any ξ ∈ Ξ.

15



(ii) Full insurance is achievable, namely

u′1
(
cFB1 (ξ)

)
= γ for any ξ ∈ Ξ,

in which γ > 0 denotes the Lagrangian multiplier on the budget constraint∫ ξ̄
ξ
z(ξ)f(ξ)dξ ≤ 0.

Under asymmetric information, the center takes into account truth-telling constraints
and solves the following program:

max

∫ ξ̄

ξ

v(ξ)f(ξ)dξ

s.t. v(ξ) = V (b(ξ), z(ξ), ξ);∫ ξ̄

ξ

z(ξ)f(ξ)dξ ≤ 0;

v̇(ξ) = −u′2 (y2 − b(ξ)(1 + r)− ξψ(b(ξ), z(ξ), ξ))ψ(b(ξ), z(ξ), ξ);

ḃ(ξ) ≤ 0

(14)

in which ψ(b(ξ), z(ξ), ξ) = G2(ξ) and the constraints can be similarly interpreted as those
in program (10).

Moreover, to derive the welfare optimum under asymmetric information, we need the
following technical assumption.

Assumption 4.2 −G2g
′′
2 ≤ g′2 for all ξ ∈ (ξ, ξ̄), namely the absolute value of the elasticity

of marginal utility from G2 for generation 2 is no greater than one for all but the endpoints
of the type distribution.

Indeed, solving problem (14) gives the following proposition.

Proposition 4.4 In the asymmetric-information case without bunching, the welfare op-
timum {b∗(ξ), z∗(ξ)}ξ∈Ξ satisfies:

(i) Suppose Assumption 4.2 holds. Concerning the relationship between the
intertemporal rate of substitution between current and future private goods
consumption and the intertemporal rate of transformation, we have:

u′1(c∗1(ξ))

u′2(c∗2(ξ))

{
= 1 + r for ξ ∈ {ξ, ξ̄};
< 1 + r for ξ ∈ (ξ, ξ̄).

(ii) Let µ1(ξ) > 0 be the Lagrangian multiplier on the value constraint v(ξ) ≡
V (b(ξ), z(ξ), ξ) of any type-ξ region who is reporting truthfully, then we
have:

u′1 (c∗1(ξ))

{
= γ/µ1(ξ) for ξ ∈ {ξ, ξ̄};
< γ/µ1(ξ) for ξ ∈ (ξ, ξ̄).

Proof. See Appendix A.
As before, due to the informational constraint, the intertemporal allocation is not

distorted only at the endpoints of shock distribution and there is incomplete insurance.
Also, a comparison of the first-best allocation and the asymmetric-information optimum
leads to the following proposition.
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Proposition 4.5 For the current economic environment, the following statements are
true.

(i) If µ1(ξ) is decreasing in ξ, then (i-a) there exists some ξ̃ ∈ (ξ, ξ̄) such

that z∗(ξ) > zFB(ξ) for all ξ ∈ [ξ, ξ̃]; (i-b) z∗(ξ̄) < zFB(ξ̄); and (i-c)

b∗(ξ) < bFB(ξ) and b∗(ξ̄) > bFB(ξ̄) whenever g′′1/g
′′
2 ≤ ρθ(1 + r).

(ii) If µ1(ξ) is increasing in ξ, then (ii-a) there exists some ξ̆ ∈ (ξ, ξ̄) such

that z∗(ξ) > zFB(ξ) for all ξ ∈ [ξ̆, ξ̄]; (ii-b) z∗(ξ) < zFB(ξ); and (ii-c)

b∗(ξ) > bFB(ξ) and b∗(ξ̄) < bFB(ξ̄) whenever g′′1/g
′′
2 ≤ ρθ(1 + r).

Proof. See Appendix A.
If µ1(ξ) is decreasing in ξ, then the shadow prices of the value constraint under truth-

telling are larger for lower types of regions than for higher types. As a result, it is more
likely to be that the lower types extract the information rent and receive larger grants
under asymmetric information than they would under full information. Claim (ii-a) can
be interpreted in a similar way.

Regardless of whether µ1(ξ) is decreasing or increasing in ξ, the optimal allocation un-
der asymmetric information is distorted at both top and bottom of the shock distribution,
and importantly, the distortion is qualitatively reversed between the top and bottom. For
example, in the case of part (i), the top type receives smaller grants and issues more
debt, whereas the bottom type receives larger grants and issues less debt than they would
exhibit, respectively, in the full-information optimum.

In particular, if g1(·) = lnG1 and g2(·) = ln(θG1 + ξG2), then g′′1/g
′′
2 ≤ ρθ(1 + r)

implies that G2/G1 ≤ [
√
ρθ(1 + r)− θ]ρ with

√
ρθ(1 + r) > θ; if g1(·) = Gα

1 and g2(·) =
(θG1 +ξG2)α for some parameter α ∈ (0, 1), then g′′1/g

′′
2 ≤ ρθ(1+r) implies that G2/G1 ≤

{[ρθ(1 + r)]1/(2−α) − θ}ρ with [ρθ(1 + r)]1/(2−α) > θ. That is, under log or power utility
functions of public goods consumption, the sufficient condition for claims (i-c) and (ii-c)
to hold is that the growth rate of local public goods provision must be bounded above.

4.2.2 Implementation

To implement the welfare optimum via regionally-decentralized debt decisions, we
solve first the maximization problem of regions of type-ξ:

max
b(ξ)

V (b(ξ), z(ξ), ξ)

for any given z(ξ). Rewriting public goods consumptions as G1 = φ(b(ξ), z(ξ), ξ) and
G2 = ψ(b(ξ), z(ξ), ξ) and applying the Envelope Theorem, the first-order condition is
thus written as

u′1 (y1 + b(ξ) + z(ξ)− φ(b(ξ), z(ξ), ξ))

= (1 + r)u′2 (y2 − (1 + r)b(ξ)− ξψ(b(ξ), z(ξ), ξ)) .
(15)

Making use of (15) and Lemma 4.2, we immediately have the result: The full-information
optimum is attained by simply setting z(ξ) = zFB(ξ) for all ξ ∈ Ξ.

Under asymmetric information, we obtain the following implementation scheme.

Proposition 4.6 Suppose Assumption 4.2 holds and the second-order sufficient condition
for incentive compatibility is not binding, namely ḃ(ξ) < 0. Then, the grant scheme z∗(b)
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that decentralizes the asymmetric-information optimum {b∗(ξ), z∗(ξ)}ξ∈Ξ is a nonlinear
nondecreasing function of b, almost everywhere differentiable, with the slope

dz∗

db

{
= 0 for b ∈ {b∗(ξ), b∗(ξ̄)};
> 0 for b ∈ (b∗(ξ̄), b∗(ξ)).

Proof. See Appendix A.
The intuition for zero slope at the endpoints of type distribution is the same as that

stated for Proposition 3.3. For regions of other types, we have nonzero slopes. In partic-
ular, if regions of higher degrees of technological progress (namely smaller ξ) are allowed
to issue more debt than regions of lower degrees, then the grant scheme that decentralizes
the asymmetric-information optimum should be designed such that the former regions get
strictly more grants than do the latter ones. As Vz > 0, this grant scheme guarantees that
regions with high degrees of technological progress shall not mimic regions of low degrees.

The implication for the optimal funding structure of IPGs with observable physical
output, such as parks, public schools and highways, is the following: more (respectively
less) federal transfers plus more (respectively less) local borrowing for regions of higher
(respectively lower) degrees of technological process for producing these IPGs. As such,
when facing this kind of shocks and when each region has the autonomy in choosing the
level of its public debt, federal transfers and local debt exhibit complementarity in terms
of regional insurance provision.

5 Conclusion

This paper aims to study theoretically the design and implementation of optimal in-
surance provision to sub-national regions against privately observable shocks. We consider
two types of shocks to regional economies, one of which is to the degree of intergenera-
tional spillovers induced by IPGs and the other is to the degree of technological progress
for producing the IPGs.

We focus on the joint design of two widely-adopted public risk-sharing schemes, namely
intergovernmental grants that provide cross-region insurance along the space dimension
and public debt that provides cross-generation insurance along the time dimension. To
the best of our knowledge, this paper is the first attempt towards the joint design of
these two risk-sharing schemes and the formal analysis of their interaction in the course
of implementing welfare optimum in the literature of regional insurance provision within
federations.

In the welfare optimum, we have the following two predictions. First, the informa-
tional asymmetries considered here preclude the availability of complete public insurance
under risk-averse individual preferences. This is consistent with the empirical evidence
that public insurance schemes need to be complemented by private ones. Second, if the
intergovernmental grant received by the bottom type is distorted upward (or is large),
then its public debt must be distorted downward (or be low), and vice versa; meanwhile,
the direction of distortion is qualitatively reversed between the bottom and top types.

To decentralize truthfully the welfare optimum, we have the following three predic-
tions. First, for the top and bottom types of regions, the intergovernmental grant scheme
that decentralizes the asymmetric-information optimum turns out to be independent of
regional public debt, regardless of the source of shocks and whether the expenditure on
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or the output of public goods is observable when regions differ in the degree of techno-
logical progress. Second, for all other types of regions when they differ in the degree of
intergenerational externality, regional debt is complementary to the grant scheme that
decentralizes the welfare optimum. That is, intergenerational insurance and interregional
insurance exhibit complementarity. Third, for all other types of regions when they dif-
fer in the degree of technological progress, regional debt is complementary to the grant
scheme that decentralizes the welfare optimum if only the physical output of public goods
is observable; otherwise, regional debt is substitutive to the grant scheme. Therefore, it
is worthwhile distinguishing the case of observable input to that of observable output in
terms of regional insurance provision.
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Appendix A: Proofs

Proof of Proposition 3.1. We shall complete the proof in four steps.
Step 1: We define the value function to a type-θ region when it is truth-telling as

v(θ) ≡ V (b(θ), z(θ), θ). (16)

Applying Envelope Theorem to (2), we get the following first-order necessary condition
for the truth-telling constraints (5) to be satisfied:

v̇(θ) = g′2(θφ(b(θ), z(θ), θ) + ψ(b(θ), z(θ), θ))φ(b(θ), z(θ), θ), (17)

in which G1(θ) ≡ φ(b(θ), z(θ), θ) and G2(θ) ≡ ψ(b(θ), z(θ), θ).
We now derive the second-order sufficient condition for incentive compatibility. After

some algebra, the local second-order condition of (5) can be written as

ḃ(θ) · Vz(b(θ), z(θ), θ) ·
∂

∂θ̃

(
Vb(b(θ), z(θ), θ̃)

Vz(b(θ), z(θ), θ̃)

)∣∣∣∣
θ̃=θ

≥ 0.

Noting that Vz(·) = g′1 + θg′2 > 0 and the Spence-Mirrlees property reads as

∂

∂θ

(
Vb
Vz

)
=

(1 + r)[(g′2)2 −G1g
′
1g
′′
2 ]

(g′1 + θg′2)2
> 0,

we thus must have
ḃ(θ) ≥ 0, (18)

which gives the desired monotonicity constraint. It is easy to verify that the local second-
order condition also implies global optimality of the truth-telling strategy with the help
of the above Spence-Mirrlees property.

We can equivalently rewrite (18) as

ḃ(θ) = β(θ), β(θ) ≥ 0. (19)

The problem of the center is therefore to choose piecewise continuous control variables
b(θ) and z(θ) to maximize ∫ θ̄

θ

v(θ)f(θ)dθ

subject to constraints (7), (16), (17) and (19).
Step 2: To solve the optimal control problem with integral and inequality constraints,

we write the generalized Hamiltonian as:

H = v(θ)f(θ) + µ1(θ)[V (b(θ), z(θ), θ)− v(θ)]f(θ) + µ2(θ)β(θ)− γz(θ)f(θ)

+ η1(θ)g′2(θφ(b(θ), z(θ), θ) + ψ(b(θ), z(θ), θ))φ(b(θ), z(θ), θ) + η2(θ)β(θ),

where µ1(θ), µ2(θ) and γ are non-negative Lagrangian multipliers, and η1(θ) and η2(θ)
are co-state variables. The first-order necessary conditions for a solution to the optimal
control problem can now be stated as the state equations (17) and (19), plus

Hz = µ1(θ)Vz(b(θ), z(θ), θ)f(θ)− γf(θ) + η1(θ)[g′′2(θφz + ψz)φ+ g′2φz] = 0, (20)
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Hβ = µ2(θ) + η2(θ) = 0, (21)

and
η̇1(θ) = −Hv = [µ1(θ)− 1]f(θ), (22)

η̇2(θ) = −Hb = −µ1(θ)[g′1 − (1 + r − θ)g′2]f(θ)− η1(θ)[g′′2(θφb + ψb)φ+ g′2φb]. (23)

In addition, we have the following transversality conditions:

η1(θ) = η2(θ) = 0 for ∀θ ∈ {θ, θ̄}. (24)

Step 3: Using (3) and the assumption that ρ = 1, we can write private consumptions
as functions of debt, transfers and the degree of intergenerational spillovers: c1 ≡ φ̃(b, z, θ)
and c2 ≡ ψ̃(b, z, θ). Applying Implicit Function Theorem to (3), we have these partial
derivatives:

φ̃b(b, z, θ) =
g′′1(u′′2 + g′′2)− (1 + r − θ)θu′′2g′′2

Σ
,

ψ̃b(b, z, θ) =
θu′′1g

′′
2 − (1 + r)(u′′1 + g′′1)g′′2

Σ
;

(25)

and

φ̃z(b, z, θ) =
g′′1(u′′2 + g′′2) + θ2u′′2g

′′
2

Σ
, ψ̃z(b, z, θ) =

θu′′1g
′′
2

Σ
; (26)

with Σ ≡ (u′′1 + g′′1)(u′′2 + g′′2) + θ2u′′2g
′′
2 > 0. Using φ(b, z, θ) = y1 + b + z − φ̃(b, z, θ),

ψ(b, z, θ) = y2 − b(1 + r)− ψ̃(b, z, θ), (25) and (26), we obtain

φb =
u′′1(u′′2 + g′′2) + θ2u′′2g

′′
2 + (1 + r − θ)θu′′2g′′2
Σ

> 0,

ψb = −θu
′′
1g
′′
2 + (1 + r)[(u′′1 + g′′1)u′′2 + θ2u′′2g

′′
2 ]

Σ
< 0;

(27)

and

φz =
u′′1(u′′2 + g′′2)

Σ
> 0, ψz = −θu

′′
1g
′′
2

Σ
< 0. (28)

Using (27) and (28), we get

θφz + ψz =
θu′′1u

′′
2

Σ
> 0, θφb + ψb = −(1 + r − θ)u′′1u′′2 + (1 + r)g′′1u

′′
2

Σ
< 0. (29)

Using (29) and (28) gives

g′′2(θφz + ψz)φ+ g′2φz =
(θG1g

′′
2 + g′2)u′′1u

′′
2 + u′′1g

′′
2g
′
2

Σ
> 0 (30)

under Assumption 3.1. Also, it is immediate from (29) and (27) that

g′′2(θφb + ψb)φ+ g′2φb > 0. (31)

Step 4: Since we are interested in the case without bunching, the monotonicity
constraint (18) must be ḃ(θ) > 0, and hence µ2(θ) = 0 for all θ ∈ Θ based on the com-
plementary slackness conditions. By (21), we must have η2(θ) = 0 everywhere, yielding
η̇2 ≡ 0. Consequently, we get from (23) and (31) that

µ1(θ)[g′1 − (1 + r − θ)g′2]f(θ) = −η1(θ)[g′′2(θφb + ψb)φ+ g′2φb]︸ ︷︷ ︸
≤0

,
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by which combined with (24) and µ1(θ)f(θ) > 0 for all θ ∈ Θ we have established the
result in part (i).

Moreover, using (20) and (30) gives rise to

µ1(θ)Vz(b(θ), z(θ), θ)f(θ)− γf(θ) = −η1(θ)[g′′2(θφz + ψz)φ+ g′2φz]︸ ︷︷ ︸
≤0

under Assumption 3.1. This combined with (24) and µ1(θ)f(θ) > 0 for all θ ∈ Θ com-
pletes the proof of part (ii).

Proof of Lemma 3.2. It follows from (22) and (24) that∫ θ̄

θ

[µ1(θ)− 1]f(θ)dθ = η1(θ̄)− η1(θ) = 0. (32)

By (20), µ1(θ) must be everywhere continuous. Therefore, if µ1(θ) is decreasing in θ, then
(32) implies that µ1(θ)− 1 is first positive and then negative as θ increases, and that the
application of Intermediate Value Theorem yields that there must be some θ̃ ∈ (θ, θ̄) such
that µ1(θ̃) = 1, as desired in part (i). The proof of part (ii) can be analogously done.

Proof of Proposition 3.2. Here we just need to show the proof of part (i) because
that of part (ii) is similar. We have by applying ρ = 1 and Envelope Theorem to (2) that
Vz = g′1(φ(b, z, θ)) + θg′2(θφ(b, z, θ) + ψ(b, z, θ)). Using this, (28) and (29) gives

Vzz(b, z, θ) = g′′1φz + θg′′2(θφz + ψz) < 0,

which combined with Lemma 3.2 produces the the desired results (i-a) and (i-b).
We now proceed to prove result (i-c). It follows from Lemma 3.1 and Proposition 3.1

that the optimal debt policy is a solution to the equation

g′1(φ(b, z, θ)) = (1 + r − θ)g′2(θφ(b, z, θ) + ψ(b, z, θ)) (33)

for any θ ∈ {θ, θ̄}. Differentiating both sides of equation (33) with respect to z and
rearranging the algebra reveal that

[g′′1φb − (1 + r − θ)g′′2(θφb + ψb)]
db

dz
= [(1 + r − θ)θg′′2 − g′′1 ]φz + (1 + r − θ)g′′2ψz.

Using (27) and (29) shows that g′′1φb − (1 + r − θ)g′′2(θφb + ψb) < 0. Differentiating both
sides of equation (33) with respect to G1 reveals that (1+r−θ)θg′′2 = g′′1 . Moreover, using
(28) leads us to that (1 + r − θ)g′′2ψz > 0. In consequence, we must have db/dz < 0 for
any θ ∈ {θ, θ̄}. This combined with results (i-a) and (i-b) completes the proof.

Proof of Proposition 3.3. By (5) and applying Envelope Theorem to (2), the first-
order condition for incentive compatibility can be written as:

(g′1 + θg′2)
dz

dθ
= [(1 + r − θ)g′2 − g′1]

db

dθ
,

by which we arrive at

dz

db
=

dz

dθ

dθ

db
=

(1 + r − θ)g′2 − g′1
g′1 + θg′2

. (34)
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It follows from (20) and (23) that

g′1 + θg′2 =
γ

µ1(θ)
− η1(θ)

µ1(θ)f(θ)
[g′′2(θφz + ψz)φ+ g′2φz] (35)

and

(1 + r − θ)g′2 − g′1 =
η1(θ)

µ1(θ)f(θ)
[g′′2(θφb + ψb)φ+ g′2φb] (36)

whenever there is no bunching. Plugging (35) and (36) in (34) results in

dz

db
=

η1(θ(b))[g′′2(θ(b)φb + ψb)φ+ g′2φb]

γf(θ(b))− η1(θ(b))[g′′2(θ(b)φz + ψz)φ+ g′2φz]

in which θ(b) is the inverse of b(θ), which exists given that ḃ(θ) > 0. As is obvious, dz/db
satisfies the property required.

Proof of Proposition 4.1. We shall complete the proof in three steps.
Step 1: Applying Envelope Theorem to the value function V (b, z, ρ) and simplifying

the algebra, we obtain the Spence-Mirrlees property:

∂

∂ρ

[
Vb(b, z, ρ)

Vz(b, z, ρ)

]
= −(1 + r)

θ(g′2)2 + g′1[g′2 + ρG2g
′′
2 ]

(g′1 + θg′2)2
< 0

under Assumption 4.1. Noting that Vz(·) = g′1 + θg′2 > 0, the second-order condition for
incentive compatibility can be written as

ḃ(ρ) · Vz(b(ρ), z(ρ), ρ) · ∂
∂ρ̃

(
Vb(b(ρ), z(ρ), ρ̃)

Vz(b(ρ), z(ρ), ρ̃)

) ∣∣∣∣
ρ̃=ρ

≥ 0,

which leads to ḃ(ρ) ≤ 0 under Assumption 4.1, as desired in (10). Let’s equivalently
rewrite this monotonicity constraint as ḃ(ρ) = β(ρ) and β(ρ) ≤ 0, then the Hamiltonian
of the optimal control problem (10) is given by

H = v(ρ)f(ρ) + µ1(ρ)[V (b(ρ), z(ρ), ρ)− v(ρ)]f(ρ)− µ2(ρ)β(ρ)− γz(ρ)f(ρ)

+ η1(ρ)g′2(θφ(b(ρ), z(ρ), ρ) + ρψ(b(ρ), z(ρ), ρ))ψ(b(ρ), z(ρ), ρ) + η2(ρ)β(ρ),

where φ(b(ρ), z(ρ), ρ) = G1(ρ), ψ(b(ρ), z(ρ), ρ) = G2(ρ), µ1(ρ), µ2(ρ) and γ are non-
negative Lagrangian multipliers, and η1(ρ) and η2(ρ) are co-state variables. The first-order
necessary conditions are given by

Hz = µ1(ρ)Vz(b(ρ), z(ρ), ρ)f(ρ)− γf(ρ) + η1(ρ)[g′′2(θφz + ρψz)ψ + g′2ψz] = 0, (37)

Hβ = −µ2(ρ) + η2(ρ) = 0, (38)

and
η̇1(ρ) = −Hv = [µ1(ρ)− 1]f(ρ), (39)

η̇2(ρ) = −Hb = −µ1(ρ){g′1− [ρ(1 + r)− θ]g′2}f(ρ)− η1(ρ)[g′′2(θφb +ρψb)ψ+ g′2ψb]. (40)

In addition, we have the following transversality conditions:

η1(ρ) = η2(ρ) = 0 for ∀ρ ∈ {ρ, ρ̄}. (41)
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Step 2: Applying Implicit Function Theorem to (9) gives rise to:

φb =
u′′1(u′′2 + ρ2g′′2) + ρθ(1 + r)u′′2g

′′
2

M
> 0, φz =

u′′1(u′′1 + ρ2g′′2)

M
> 0; (42)

and

ψb = −(1 + r)[(u′′1 + g′′1)u′′2 + θ2u′′2g
′′
2 ] + ρθu′′1g

′′
2

M
< 0, ψz = −ρθu

′′
1g
′′
2

M
< 0 (43)

in which M ≡ (u′′1 + g′′1)(u′′2 + ρ2g′′2) + θ2u′′2g
′′
2 > 0. Making use of (42) and (43), we have

g′′2(θφz + ρψz)ψ + g′2ψz < 0 (44)

given that

θφz + ρψz =
θu′′1u

′′
2

M
> 0. (45)

In addition, we get by (42), (43) and

θφb + ρψb = − [ρ(1 + r)− θ]u′′1u′′2 + ρ(1 + r)u′′2g
′′
1

M
< 0 (46)

that

g′′2(θφb + ρψb)ψ + g′2ψb

= − [ρG2g
′′
2 + g′2](1 + r)(u′′1 + g′′1)u′′2 − θG2u

′′
1u
′′
2g
′′
2 + [(1 + r)θu′′2 + ρu′′1]θg′2g

′′
2

M
< 0

(47)

under Assumption 4.1.
Step 3: Since we focus on the case without bunching, we must have µ2(ρ) = 0 for all

ρ ∈ Υ. By (38), we have η2(ρ) = 0 everywhere, implying that η̇2 ≡ 0. Applying this, (41)
and (47) to (40) yields the desired assertion in part (i). Finally, applying (44), (41) and
µ1(ρ)f(ρ) > 0 to (37) produces the desired assertion in part (ii).

Proof of Proposition 4.2. Using (39), the proof is quite similar to that of Proposition
3.2. Here we just need to show the following. Firstly, using (42) and (45) reveals that
Vzz = g′′1φz + θg′′2(θφz + ρψz) < 0 for all ρ ∈ Υ. Secondly, by differentiating both sides of
equation g′1 = [ρ(1 + r)− θ]g′2 with respect to z, we obtain

[g′′1φb − [ρ(1 + r)− θ]g′′2(θφb + ρψb)]︸ ︷︷ ︸
<0

db

dz
= [ρ(1 + r)− θ]g′′2(θφz + ρψz)− g′′1φz

under (42) and (46). As we get from (42) and (45) that

[ρ(1 + r)− θ]g′′2(θφz + ρψz)− g′′1φz = −ρ
2u′′1g

′′
1g
′′
2

M
> 0,

we thus have db/dz < 0 at the welfare optimum.
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Proof of Proposition 4.3. The key for a grant scheme to decentralize the asymmetric-
information optimum is that it takes into account the incentive-compatibility constraint.
First, making use of the first-order necessary condition for incentive compatibility, we get

dz

db
=
dz

dρ

dρ

db
= −Vb

Vz
.

As the monotonicity constraint is assumed to be not binding, we get from (37) and (40)
that

dz

db
=

η1(ρ(b)) [g′′2(θφb + ρ(b)ψb)ψ + g′2ψb]

γf(ρ(b))− η1(ρ(b)) [g′′2(θφz + ρ(b)ψz)ψ + g′2ψz]
,

in which ρ(b) denotes the inverse of b(ρ). Secondly, making use of (41), (44) and (47), the
proof is immediately complete.

Proof of Proposition 4.4. We shall complete the proof in two steps.
Step 1: As before, the Hamiltonian of the optimal control problem (14) is given by

H = v(ξ)f(ξ) + µ1(ξ)[V (b(ξ), z(ξ), ξ)− v(ξ)]f(ξ)− µ2(ξ)β(ξ)− γz(ξ)f(ξ)

− η1(ξ)u′2 (y2 − (1 + r)b(ξ)− ξψ(b(ξ), z(ξ), ξ))ψ(b(ξ), z(ξ), ξ) + η2(ξ)β(ξ).

The first-order necessary conditions are given by

Hz = µ1(ξ)Vz(b(ξ), z(ξ), ξ)f(ξ)− γf(ξ)− η1(ξ)(−ξu′′2ψzψ + u′2ψz) = 0, (48)

Hβ = −µ2(ξ) + η2(ξ) = 0, (49)

and
η̇1(ξ) = −Hv = [µ1(ξ)− 1]f(ξ), (50)

η̇2(ξ) = −Hb = −µ1(ξ)[u′1− (1+ r)u′2]f(ξ)+η1(ξ)[−(1+ r)u′′2ψ− ξu′′2ψbψ+u′2ψb]. (51)

In addition, we have the following transversality conditions:

η1(ξ) = η2(ξ) = 0 for ∀ξ ∈ {ξ, ξ̄}. (52)

Step 2: Applying Implicit Function Theorem to (13) gives rise to:

φb =
u′′1(ξ2u′′2 + g′′2) + ξθ(1 + r)u′′2g

′′
2

Q
> 0, φz =

u′′1(ξ2u′′2 + g′′2)

Q
> 0; (53)

and

ψb = −ξ(1 + r)(u′′1 + g′′1 + θ2g′′2)u′′2 + θu′′1g
′′
2

Q
< 0, ψz = −θu

′′
1g
′′
2

Q
< 0 (54)

in which Q ≡ (u′′1 + g′′1)(ξ2u′′2 + g′′2) + ξ2θ2u′′2g
′′
2 > 0. Now, applying (52) and (54) to (48)

gives the desired assertion in part (ii). Moreover, using (54) again reveals that

− (1 + r)u′′2ψ − ξu′′2ψbψ + u′2ψb =

− (1 + r)(u′′1 + g′′1)u′′2(g′′2ψ + g′2) + θu′′1g
′′
2(u′2 − ξψu′′2) + θ2(1 + r)u′′1u

′′
2g
′
2

Q
< 0

(55)
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under Assumption 4.2. In the case of no bunching, applying (49), (52) and (55) to (51)
produces the desired assertion in part (i).

Proof of Proposition 4.5. The proof follows from using (50), (52), Lemma 4.2 and
Proposition 4.4. Here we just give by using (53), (54) and u′1 = (1 + r)u′2 evaluated at
the welfare optimum that

Vzz = u′′1(1− φz) =
u′′1g

′′
1(ξ2u′′2 + g′′2) + θ2ξ2u′′1u

′′
2g
′′
2

Q
< 0

and

[(1− φb)u′′1 + (1 + r)(1 + r + ξψb)u
′′
2]
db

dz
= −ξ(1 + r)u′′2ψz − (1− φz)u′′1

in which

(1− φb)u′′1 + (1 + r)(1 + r + ξψb)u
′′
2

=
u′′1g

′′
1(ξ2u′′2 + g′′2) + (1 + r − θξ)2u′′1u

′′
2g
′′
2 + (1 + r)2u′′2g

′′
1g
′′
2

Q
< 0

and

− ξ(1 + r)u′′2ψz − (1− φz)u′′1

= − ξu′′1u
′′
2[ξg′′1 − (1 + r)θg′′2 ] + θ2ξ2u′′1u

′′
2g
′′
2 + u′′1g

′′
1g
′′
2

Q
> 0

whenever g′′1 ≤ ρθ(1 + r)g′′2 holds.

Proof of Proposition 4.6. As we focus on the case of no bunching, we have by using
the first-order necessary condition for incentive compatibility, (48) and (51) that

dz∗

db
=
−η1(ξ(b))[−(1 + r)u′′2ψ − ξ(b)u′′2ψbψ + u′2ψb]

γf(ξ(b)) + η1(ξ(b))[−ξ(b)u′′2ψzψ + u′2ψz]
,

in which ξ(b) denotes the inverse of b(ξ) under the assumption of ḃ(ξ) < 0. By using (55)
and (52), we see that dz∗/db satisfies the property required.

29



Appendix B: Discussion on Multidimensional Hetero-

geneity

Following Lockwood (1999), in the text we focus on the analysis of one-dimensional un-
observed heterogeneity, which is either the degree of intergenerational externality induced
by IPGs, denoted by parameter θ, or the degree of technological progress for producing
the IPGs, denoted by parameter ρ (or equivalently ξ). Here we attempt to analyze the
case with multidimensional heterogeneity, i.e., regions differ in both the degree of inter-
generational externality and the degree of technological progress. Nevertheless, for the
sake of obtaining some interesting theoretical results, we need to impose the following
restriction:

Assumption 5.1 Let ξ ≡ Ψ(θ) and ρ = 1/ξ = 1/Ψ(θ) ≡ Φ(θ), in which Ψ(·) is a
continuously differentiable function satisfying Ψ′(·) > 0.

Since both the degree of intergenerational externality and the degree of technological
progress are closely related to the IPGs, by Assumption 5.1 we mean that there is a pub-
licly observable functional relationship that governs these two parameters. In particular,
Ψ′(θ) > 0 means that a higher degree of intergenerational externality induced by IPGs
leads to a higher per unit cost of producing the IPGs. Intuitively, we assume that if a
public good is of higher quality, durability or intergenerational spillovers, then the per
unit cost of producing it tends to be higher. For example, a study of the construction
costs of high-speed railways in China by Ollivier, Sondhi and Zhou (2014) shows that the
weighted average unit cost for a passenger-dedicated line was RMB 129 million per km
for a 350 km/h project and RMB 87 million per km for a 250 km/h project. As we could
reasonably expect that more and more passengers in the future are willing to take trains
of higher speeds, we might roughly interpret that a 350 km/h project generates higher
intergenerational spillovers than a 250 km/h project, somehow justifying Assumption 5.1.
Also, Assumption 5.1 helps us to consider the case with multidimensional heterogeneity
but with one-dimensional asymmetric information.

As in Section 4, whenever regions face shocks to the degree of technological process
for producing public goods, we need to distinguish the case with observable expenditure
on public goods to the case with observable physical output of public goods.

I: The Case with Observable Expenditure on Public Goods

Applying Assumption 5.1, the FOCs given by equation (9) can be rewritten as:

u′1(c1) = g′1(G1) + θg′2(θG1 + Φ(θ)G2) and u′2(c2) = Φ(θ)g′2(θG1 + Φ(θ)G2). (56)

As in the text, let the value function be written as v(θ) ≡ V (b(θ), z(θ), θ). Applying
Assumption 5.1 and Envelope Theorem to (2) produces the following first-order necessary
condition for incentive compatibility:

v̇(θ) = g′2 (θφ(b(θ), z(θ), θ) + Φ(θ)ψ(b(θ), z(θ), θ))

× [φ(b(θ), z(θ), θ) + Φ′(θ)ψ(b(θ), z(θ), θ)] ,
(57)

in which G1(θ) ≡ φ(b(θ), z(θ), θ) and G2(θ) ≡ ψ(b(θ), z(θ), θ). Applying Envelope Theo-
rem to the value function V (b, z, θ) again gives us Vb(b, z, θ) = g′1 + g′2 · [θ − Φ(θ)(1 + r)]
and Vz(b, z, θ) = g′1 + θg′2 > 0 for all θ ∈ Θ, by which we can obtain:
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Lemma 5.1 Under Assumption 5.1, if G1(θ)/G2(θ) ≥ −Φ′(θ), then the global optimality
of truth-telling strategy is guaranteed by the second-order condition ḃ(θ) ≥ 0 for all θ ∈ Θ.

Proof. Since by equation (2) and Assumption 5.1 we get

∂

∂θ

[
Vb(b, z, θ)

Vz(b, z, θ)

]
=

1 + r

(g′1 + θg′2)2

×

[Φ(θ)− θΦ′(θ)] (g′2)2 − Φ′(θ)g′1g
′
2︸ ︷︷ ︸

>0

− Φ(θ)g′1g
′′
2︸ ︷︷ ︸

<0

[G1 + Φ′(θ)G2]

 ,

we thus have
∂

∂θ

[
Vb(b, z, θ)

Vz(b, z, θ)

]
> 0 (58)

whenever G1 +Φ′(θ)G2 ≥ 0. Condition (58) thus guarantees the Spence-Mirrlees property.
The second-order condition for incentive compatibility can be expressed as:

ḃ(θ) · Vz(b(θ), z(θ), θ) ·
∂

∂θ̃

(
Vb(b(θ), z(θ), θ̃)

Vz(b(θ), z(θ), θ̃)

)∣∣∣∣
θ̃=θ

≥ 0,

which combined with the fact Vz > 0 and Spence-Mirrlees property (58) reveals that
ḃ(θ) ≥ 0 must hold. Applying the standard argument given on page 143 of Laffont and
Martimort (2002), the proof is then complete.

Lemma 5.1 states that truth-telling calls for a regional debt allocation which is non-
decreasing in the degree of intergenerational externality. Condition G1(θ)/G2(θ) ≥ −Φ′(θ)
means that the ratio of period-1 public goods expenditure to period-2 public goods ex-
penditure is greater than some lower bound. For later use, we give

Assumption 5.2 G1(θ)/G2(θ) ≥ −Φ′(θ) for all θ ∈ Θ.

Now, by safely replacing the global incentive-compatibility condition (5) by (57) and
ḃ(θ) ≥ 0 established in Lemma 5.1, the optimization problem facing the center is formal-
ized as:

max

∫ θ̄

θ

v(θ)f(θ)dθ

s.t. v(θ) = V (b(θ), z(θ), θ);∫ θ̄

θ

z(θ)f(θ)dθ ≤ 0;

v̇(θ) = g′2 (θφ(b(θ), z(θ), θ) + Φ(θ)ψ(b(θ), z(θ), θ))

× [φ(b(θ), z(θ), θ) + Φ′(θ)ψ(b(θ), z(θ), θ)] ;

ḃ(θ) ≥ 0.

By solving this problem we arrive at the following proposition:

Proposition 5.1 Suppose Assumptions 5.1 and 5.2 hold. In the asymmetric-information
case without bunching, the welfare optimum {b∗(θ), z∗(θ)}θ∈Θ satisfies:
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(i) Concerning the relationship between the intertemporal rate of substitution
between current and future public goods consumption and the intertemporal
rate of transformation, we have:

g′1(G∗1(θ))

g′2(θG∗1(θ) + Φ(θ)G∗2(θ))

{
= Φ(θ)(1 + r)− θ for θ ∈ {θ, θ̄};
< Φ(θ)(1 + r)− θ for θ ∈ (θ, θ̄).

(ii) Let µ1(θ) > 0 be the Lagrangian multiplier on the value constraint v(θ) ≡
V (b(θ), z(θ), θ) of any type-θ region who is reporting truthfully, we have:

• Vz (b∗(θ), z∗(θ), θ) = γ/µ1(θ) for θ ∈ {θ, θ̄};
• If the ratio G1(θ)/G2(θ) is sufficiently close to −Φ′(θ), then

Vz (b∗(θ), z∗(θ), θ) < γ/µ1(θ)

for θ ∈ (θ, θ̄);

• If the ratio G1(θ)/G2(θ) is sufficiently larger than −Φ′(θ), then we
have for any θ ∈ (θ, θ̄) that:

Vz (b∗(θ), z∗(θ), θ)


< γ/µ1(θ) for |εg′2,θφ+Φ(θ)ψ| · εθφ+Φ(θ)ψ,z < εφ+Φ′(θ)ψ,z,

= γ/µ1(θ) for |εg′2,θφ+Φ(θ)ψ| · εθφ+Φ(θ)ψ,z = εφ+Φ′(θ)ψ,z,

> γ/µ1(θ) for |εg′2,θφ+Φ(θ)ψ| · εθφ+Φ(θ)ψ,z > εφ+Φ′(θ)ψ,z,

in which |εg′2,θφ+Φ(θ)ψ| represents the absolute value of the elasticity of
g′2 with respect to the amount of period-2 public goods consumption
θφ+ Φ(θ)ψ, εθφ+Φ(θ)ψ,z > 0 represents the elasticity of the amount of
period-2 public goods consumption with respect to the federal transfers
z, and εφ+Φ′(θ)ψ,z > 0 represents the elasticity of φ + Φ′(θ)ψ with
respect to z.

Proof. First, we let ḃ(θ) ≡ β(θ) as before, and write the generalized Hamiltonian as:

H = v(θ)f(θ) + µ1(θ)[V (b(θ), z(θ), θ)− v(θ)]f(θ) + µ2(θ)β(θ)− γz(θ)f(θ)

+ η1(θ)g′2(θφ(b(θ), z(θ), θ) + Φ(θ)ψ(b(θ), z(θ), θ))

× [φ(b(θ), z(θ), θ) + Φ′(θ)ψ(b(θ), z(θ), θ)] + η2(θ)β(θ),

where µ1(θ), µ2(θ) and γ are non-negative Lagrangian multipliers, and η1(θ) and η2(θ)
are co-state variables. The first-order necessary conditions are

Hz = µ1(θ)Vz(b(θ), z(θ), θ)f(θ)− γf(θ)

+ η1(θ){g′′2 · [θφz + Φ(θ)ψz][φ+ Φ′(θ)ψ] + g′2 · [φz + Φ′(θ)ψz]} = 0,
(59)

Hβ = µ2(θ) + η2(θ) = 0, (60)

η̇1(θ) = −Hv = [µ1(θ)− 1]f(θ), (61)

and
η̇2(θ) = −Hb

= − µ1(θ){g′1 − [Φ(θ)(1 + r)− θ]g′2}f(θ)

− η1(θ){g′′2 · [θφb + Φ(θ)ψb][φ+ Φ′(θ)ψ] + g′2 · [φb + Φ′(θ)ψb]}.
(62)
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In addition, we have the following transversality conditions:

η1(θ) = η2(θ) = 0 for ∀θ ∈ {θ, θ̄}. (63)

Following the first-order approach, we must have µ2(θ) = 0 for all θ ∈ Θ. By (60) we
thus have η2(θ) = 0 for all θ ∈ Θ, and hence we must have η̇2 ≡ 0. Applying η̇2 ≡ 0,
µ1(θ)f(θ) > 0 and (63) to (62) reveals that g′1 = [Φ(θ)(1 + r) − θ]g′2 for θ ∈ {θ, θ̄}, as
desired in part (i). Also, applying (63) to (59) reveals that µ1(θ)Vz(b(θ), z(θ), θ) = γ for
θ ∈ {θ, θ̄}, as desired in part (ii).

By applying Implicit Function Theorem to the FOCs given by (56), we can still have
those partial derivatives given by equations (42) and (43). In consequence, we get by (42),
(43), (46) and Assumption 5.2 that

g′′2︸︷︷︸
<0

· [θφb + Φ(θ)ψb]︸ ︷︷ ︸
<0

· [φ+ Φ′(θ)ψ]︸ ︷︷ ︸
≥0

+ g′2︸︷︷︸
>0

· [φb + Φ′(θ)ψb]︸ ︷︷ ︸
>0

> 0, (64)

which combined with η̇2 ≡ 0, µ1(θ)f(θ) > 0 and (62) concludes the proof of part (i).
Finally, using (42), (43), (45) and Assumption 5.2 shows that

g′′2 · [θφz + Φ(θ)ψz]︸ ︷︷ ︸
<0

· [φ+ Φ′(θ)ψ]︸ ︷︷ ︸
≥0

+ g′2 · [φz + Φ′(θ)ψz]︸ ︷︷ ︸
>0

.

Thus, the sign of this formula is positive whenever φ + Φ′(θ)ψ is sufficiently close to
zero from above, applying which to equation (59) gives the second result in part (ii). If,
however, φ+ Φ′(θ)ψ is sufficiently larger than zero, then we have by using (42), (43), (45)
and Assumption 5.2 again that:

g′′2 · [θφz + Φ(θ)ψz]︸ ︷︷ ︸
−

· [φ+ Φ′(θ)ψ]︸ ︷︷ ︸
+

+ g′2 · [φz + Φ′(θ)ψz]︸ ︷︷ ︸
+

< 0

⇔ − [θφ+ Φ(θ)ψ]g′′2
g′2︸ ︷︷ ︸

|εg′2,θφ+Φ(θ)ψ |

· z[θφz + Φ(θ)ψz]

θφ+ Φ(θ)ψ︸ ︷︷ ︸
εθφ+Φ(θ)ψ,z

>
z[φz + Φ′(θ)ψz]

φ+ Φ′(θ)ψ︸ ︷︷ ︸
εφ+Φ′(θ)ψ,z

applying which to equation (59), therefore, concludes the proof of part (ii).
The key message conveyed by Proposition 5.1 can be summarized as follows. First, in

the asymmetric-information optimum only the intertemporal allocation at the endpoints
of type distribution is not distorted with respect to the first-best. Second, the presence
of the asymmetric information between center and regions prevents full insurance from
happening.

We now proceed to the implementation of the asymmetric-information optimum estab-
lished in Proposition 5.1 through decentralized regional debt decisions, which lead to the
intertemporal allocation features that intertemporal rate of substitution between current
and future public goods consumption equals intertemporal rate of transformation:

g′1 (φ(b(θ), z(θ), θ))

g′2 (θφ(b(θ), z(θ), θ) + Φ(θ)ψ(b(θ), z(θ), θ))
= Φ(θ)(1 + r)− θ,

which is desired by each region for any given amount of federal transfers. As shown in
the text, the task facing the center is to design intergovernmental grants scheme that
guarantees incentive compatibility for all regions. Indeed, we can obtain the following
result:
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Proposition 5.2 The grant scheme z∗(b) that decentralizes the asymmetric-information
optimum {b∗(θ), z∗(θ)}θ∈Θ is a nonlinear nondecreasing function of b, almost everywhere
differentiable, with the slope

dz∗

db

{
= 0 for b ∈ {b∗(θ), b∗(θ̄)};
> 0 for b ∈ (b∗(θ), b∗(θ̄)).

Proof. Making use of the first-order necessary condition for incentive compatibility, we
get

dz

db
=
dz

dθ

dθ

db
= −Vb

Vz
,

in which we have shown above that Vz > 0 always holds true. As we focus on the case
without bunching, we get from (62) and (64) that

− Vb (b(θ), z(θ), θ)

=
η1(θ)

µ1(θ)f(θ)
{g′′2 · [θφb + Φ(θ)ψb][φ+ Φ′(θ)ψ] + g′2 · [φb + Φ′(θ)ψb]} > 0

for all θ ∈ (θ, θ̄). We thus have for all b ∈ (b∗(θ), b∗(θ̄)) that:

dz

db
=
η1(θ(b)){g′′2 · [θ(b)φb + Φ(θ(b))ψb][φ+ Φ′(θ(b))ψ] + g′2 · [φb + Φ′(θ(b))ψb]}

µ1(θ(b))f(θ(b))Vz
> 0

in which by a little abuse of notation θ(b) denotes the inverse of b(θ), which does exist by
Lemma 5.1. Finally, applying (63) immediately completes the proof.

The main message of Proposition 5.2 is that federal transfers and local debt in general
paly a complementary role for regional insurance provision. Except for the bottom and
top types whose intertemporal allocations are not distorted in the asymmetric-information
optimum, the optimal funding structure in the case with observable expenditure on IPGs
exhibits the following feature: regions of a higher degree of intergenerational externality
should issue more debt and receive more federal transfers than regions of a lower degree
of intergenerational externality.

II: The Case with Observable Physical Output of Public Goods

Using Assumption 5.1, the value function given by (12) can be rewritten as:

V (b, z, θ) ≡ max
G1,G2

u1(y1 + b+ z −G1) + g1(G1)

+ u2(y2 − b(1 + r)−Ψ(θ)G2) + g2(θG1 +G2).
(65)

The first-order conditions are thus given by:

u′1(y1 + b+ z −G1) = g′1(G1) + θg′2(θG1 +G2) and

Ψ(θ)u′2(y2 − b(1 + r)−Ψ(θ)G2) = g′2(θG1 +G2).
(66)

Let v(θ) ≡ V (b(θ), z(θ), θ). Applying Envelope Theorem to (65) produces the following
first-order necessary condition for incentive compatibility:

v̇(θ) = − u′2 (y2 − b(θ)(1 + r)−Ψ(θ)ψ(b(θ), z(θ), θ)) Ψ′(θ)ψ(b(θ), z(θ), θ)

+ g′2 (θφ(b(θ), z(θ), θ) + ψ(b(θ), z(θ), θ))φ(b(θ), z(θ), θ),
(67)
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in which G1(θ) ≡ φ(b(θ), z(θ), θ) and G2(θ) ≡ ψ(b(θ), z(θ), θ).
Similar to Lemma 5.1, we now arrive at:

Lemma 5.2 Under Assumption 5.1, then the global optimality of truth-telling strategy is
guaranteed by the second-order condition ḃ(θ) ≤ 0 for all θ ∈ Θ.

Proof. Applying Envelope Theorem to the value function (65) again gives us Vb(b, z, θ) =
u′1 − (1 + r)u′2 and Vz(b, z, θ) = u′1 > 0 for all θ ∈ Θ. Under Assumption 5.1, we get

∂

∂θ

[
Vb(b, z, θ)

Vz(b, z, θ)

]
= (1 + r)

u′′2Ψ′(θ)G2

u′1
< 0, (68)

which thus guarantees the Spence-Mirrlees property. The second-order condition for in-
centive compatibility can be expressed as:

ḃ(θ) · Vz(b(θ), z(θ), θ) ·
∂

∂θ̃

(
Vb(b(θ), z(θ), θ̃)

Vz(b(θ), z(θ), θ̃)

)∣∣∣∣
θ̃=θ

≥ 0,

which combined with (68) reveals that ḃ(θ) ≤ 0 must hold.
Now, applying (67) and Lemma 5.2, the optimization problem facing the center is

formalized as:

max

∫ θ̄

θ

v(θ)f(θ)dθ

s.t. v(θ) = V (b(θ), z(θ), θ);∫ θ̄

θ

z(θ)f(θ)dθ ≤ 0;

v̇(θ) = − u′2 (y2 − b(θ)(1 + r)−Ψ(θ)ψ(b(θ), z(θ), θ)) Ψ′(θ)ψ(b(θ), z(θ), θ)

+ g′2 (θφ(b(θ), z(θ), θ) + ψ(b(θ), z(θ), θ))φ(b(θ), z(θ), θ);

ḃ(θ) ≤ 0.

By solving this problem we arrive at the following proposition:

Proposition 5.3 Suppose Assumption 5.1 holds. In the asymmetric-information case
without bunching, the welfare optimum {b∗(θ), z∗(θ)}θ∈Θ satisfies:

(i) Suppose Assumption 4.2 holds. Concerning the relationship between the
intertemporal rate of substitution between current and future public goods
consumption and the intertemporal rate of transformation, we have:

u′1(c∗1(θ))

u′2(c∗2(θ))

{
= 1 + r for θ ∈ {θ, θ̄};
< 1 + r for θ ∈ (θ, θ̄).

(ii) Let µ1(θ) > 0 be the Lagrangian multiplier on the value constraint v(θ) ≡
V (b(θ), z(θ), θ) of any type-θ region who is reporting truthfully, we have:

• Vz (b∗(θ), z∗(θ), θ) = γ/µ1(θ) for θ ∈ {θ, θ̄};
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• If |εg′2,θG1
| ≤ 1, in which the elasticity is given by εg′2,θG1

≡ g′′2 · θφ/g′2,
then

Vz (b∗(θ), z∗(θ), θ) < γ/µ1(θ)

for θ ∈ (θ, θ̄).

Proof. First, we let ḃ(θ) ≡ β(θ) as before, and write the generalized Hamiltonian as:

H = v(θ)f(θ) + µ1(θ)[V (b(θ), z(θ), θ)− v(θ)]f(θ)− µ2(θ)β(θ)− γz(θ)f(θ)

− η1(θ)u′2 (y2 − b(θ)(1 + r)−Ψ(θ)ψ(b(θ), z(θ), θ)) Ψ′(θ)ψ(b(θ), z(θ), θ)

+ η1(θ)g′2 (θφ(b(θ), z(θ), θ) + ψ(b(θ), z(θ), θ))φ(b(θ), z(θ), θ) + η2(θ)β(θ),

where µ1(θ), µ2(θ) and γ are non-negative Lagrangian multipliers, and η1(θ) and η2(θ)
are co-state variables. The first-order necessary conditions are

Hz = µ1(θ)Vz(b(θ), z(θ), θ)f(θ)− γf(θ)

+ η1(θ) [u′′2 ·Ψ(θ)Ψ′(θ)ψψz − u′2 ·Ψ′(θ)ψz]
+ η1(θ) [g′′2 · (θφz + ψz)φ+ g′2 · φz] = 0,

(69)

Hβ = −µ2(θ) + η2(θ) = 0, (70)

η̇1(θ) = −Hv = [µ1(θ)− 1]f(θ), (71)

and
η̇2(θ) = −Hb

= − µ1(θ)[u′1 − (1 + r)u′2]f(θ)

+ η1(θ){−u′′2 · [1 + r + Ψ(θ)ψb]Ψ
′(θ)ψ + u′2 ·Ψ′(θ)ψb}

− η1(θ)[g′′2 · (θφb + ψb)φ+ g′2 · φb].

(72)

In addition, we have the following transversality conditions:

η1(θ) = η2(θ) = 0 for ∀θ ∈ {θ, θ̄}. (73)

Following the first-order approach, we must have µ2(θ) = 0 for all θ ∈ Θ. By (70) we
thus have η2(θ) = 0 for all θ ∈ Θ, and hence we must have η̇2 ≡ 0. Applying η̇2 ≡ 0,
µ1(θ)f(θ) > 0 and (73) to (72) reveals that u′1 = (1 + r)u′2 for θ ∈ {θ, θ̄}, as desired in
part (i). Also, applying (73) to (69) reveals that µ1(θ)Vz(b(θ), z(θ), θ) = γ for θ ∈ {θ, θ̄},
as desired in part (ii).

By applying Implicit Function Theorem to the FOCs given by (66), we can still have
those partial derivatives given by equations (53) and (54). In consequence, we get by (53)
and (54) that

θφb + ψb =
{[θΨ(θ)− (1 + r)]u′′1 − (1 + r)g′′1}Ψ(θ)u′′2

Q
< 0 (74)

and

1 + r + Ψ(θ)ψb =
[1 + r − θΨ(θ)]u′′1g

′′
1 + (1 + r)g′′1g

′′
2

Q
> 0. (75)
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Applying η̇2 ≡ 0, Assumption 5.1, (53), (54), (74) and (75) to (72) yields that

µ1(θ)[u′1 − (1 + r)u′2]f(θ)

= η1(θ){−u′′2 · [1 + r + Ψ(θ)ψb]Ψ
′(θ)ψ︸ ︷︷ ︸

+

+ u′2 ·Ψ′(θ)ψb︸ ︷︷ ︸
−

}

− η1(θ)[g′′2 · (θφb + ψb)φ+ g′2 · φb]︸ ︷︷ ︸
+

.

(76)

As such, applying µ1(θ)f(θ) > 0, (55) (which uses Assumption 4.2), and Assumption 5.1
to (76) concludes the proof of part (i).

In addition, applying (53), (54) and Assumption 5.1 to (69) gives rise to

[µ1(θ)Vz(b(θ), z(θ), θ)− γ] f(θ)

= − η1(θ)[u′′2 ·Ψ(θ)Ψ′(θ)ψψz − u′2 ·Ψ′(θ)ψz]︸ ︷︷ ︸
+

− η1(θ)

[g′2 + g′′2 · θφ] φz︸︷︷︸
+

+ g′′2 · ψzφ︸ ︷︷ ︸
+

 ,

which combined with

g′2 + g′′2 · θφ ≥ 0 ⇔ − θφg
′′
2

g′2︸ ︷︷ ︸
εg′2,θG1

≤ 1

completes the proof of part (ii).
The key message conveyed by Proposition 5.3 can be summarized as follows. First, in

the asymmetric-information optimum only the intertemporal allocation at the endpoints
of type distribution is not distorted with respect to the first-best. Second, the presence
of the asymmetric information between center and regions prevents full insurance from
happening.

Next we characterize the scheme of federal transfers than decentralizes the asymmetric-
information optimum established in Proposition 5.3.

Proposition 5.4 Suppose Assumptions 4.2 and 5.1 hold. The grant scheme z∗(b) that
decentralizes the asymmetric-information optimum {b∗(θ), z∗(θ)}θ∈Θ is a nonlinear non-
decreasing function of b, almost everywhere differentiable, with the slope

dz∗

db

{
= 0 for b ∈ {b∗(θ), b∗(θ̄)};
> 0 for b ∈ (b∗(θ̄), b∗(θ)).

Proof. Using the first-order necessary condition for incentive compatibility gives

dz

db
=
dz

dθ

dθ

db
= −Vb

Vz
,

in which we have shown above that Vz > 0 always holds true. As we focus on the case
without bunching, we get from (76) (which uses Assumption 5.1) and (55) (which uses
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Assumption 4.2) that

− Vb (b(θ), z(θ), θ)

= − η1(θ)

µ1(θ)f(θ)
{−u′′2 · [1 + r + Ψ(θ)ψb]Ψ

′(θ)ψ + u′2 ·Ψ′(θ)ψb}︸ ︷︷ ︸
−

+
η1(θ)

µ1(θ)f(θ)
[g′′2 · (θφb + ψb)φ+ g′2 · φb]︸ ︷︷ ︸

+

for all θ ∈ (θ, θ̄). We thus have for all b ∈ (b∗(θ̄), b∗(θ)) that:

dz

db
=− η1(θ(b)){−u′′2 · [1 + r + Ψ(θ(b))ψb]Ψ

′(θ(b))ψ + u′2 ·Ψ′(θ(b))ψb}
µ1(θ(b))f(θ(b))Vz

+
η1(θ(b))[g′′2 · (θ(b)φb + ψb)φ+ g′2 · φb]

µ1(θ(b))f(θ(b))Vz
> 0,

in which by a little abuse of notation θ(b) denotes the inverse of b(θ), which does exist by
Lemma 5.2. Finally, applying (73) immediately completes the proof.

The main message of Proposition 5.4 is that federal transfers and local debt in general
paly a complementary role for regional insurance provision. Except for the bottom and
top types whose intertemporal allocations are not distorted in the asymmetric-information
optimum, the optimal funding structure in the case with observable physical output of
IPGs exhibits the following feature: regions of a higher degree of intergenerational ex-
ternality should issue less debt and receive less federal transfers than regions of a lower
degree of intergenerational externality.
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